
Introduction to SuperCollider workshop, Notam
2019

Program for the day

1. An overview: What is SuperCollider and what can you do with it?

2. The design and architecture of SuperCollider

3. Language basics: syntax, variables and expressions

4. Functions

5. Learning resources: How to proceed from here

Who am I?
Mads Kjeldgaard

Composer & developer

Work at NOTAM

Contact info

Me

website: madskjeldgaard.dk

github: github.com/madskjeldgaard

email: mail@madskjeldgaard.dk

Notam

notam02.no: notam02.no

Instagram: @notam02

Twitter: @notam02

Facebook: Notam02

http://madskjeldgaard.dk/
http://github.com/madskjeldgaard
mailto:mail@madskjeldgaard.dk
http://notam02.no/
http://www.notam02.no/
https://www.instagram.com/notam02/
https://twitter.com/notam02/
https://www.facebook.com/Notam02/

SuperCollider meetups in Oslo
Monthly SuperCollider meeetups at NOTAM

Superduper friendly and fun (+ often has cake)

Next one is September 9th, 2019

Not in Oslo? Start your own meetup group!

See the
SCOslo
group for more info

https://www.meetup.com/SCOslo-SuperCollider-Users-Group-at-NOTAM/

What is SuperCollider?
SuperCollider is a platform for audio synthesis and algorithmic
composition, used by musicians, artists, and researchers working with
sound

It is free and open source software available for Windows, macOS, and
Linux.

Why SuperCollider?
Open source and free

20+ years of development

Efficient, robust and stable

Incredibly flexible

Cross platform

Unique design concepts and features

Text based -> fast

Big community

What is SuperCollider used for?
Composition

Sound synthesis

Live coding

Improvisation

Networked performances

Installation

Dance / theater work

Immersive sound

Examples
Roosna and Flak (Dance performance)

Verdensteatret (Theater
performance)

Renick Bell
(Livecoding)

Streifenjunko (Improvised music)

https://vimeo.com/297502848
http://verdensteatret.com/hannah
https://www.youtube.com/watch?v=iHhNzHYwSzw
https://www.streifenjunko.no/

Design

Short history of SuperCollider
SC was designed by James McCartney as closed source proprietary software

Version 1 came out in 1996 based on a Max
object
called Pyrite. Cost 250$+shipping and could only run on PowerMacs.

Became free open source software in 2002 and is now cross platform.

https://groups.google.com/forum/#!topic/comp.music.research/g2f9EcL1mUw

Overview
When you download SuperCollider, you get an application that consists of
3 separate programs:

1. The IDE, a smart text editor

2. The SuperCollider language / client (sclang)

3. The SuperCollider sound server (scsynth)

Architecture

The client (language and interpreter) communicates with the server
(signal processing)

This happens over the network using Open Sound Control

Multiple servers

This modular / networked design means one client can control many
servers

Consequences of this modular design

Each of SuperCollider's components are replacable

IDE <---> Atom, Vim, or Visual Studio

language <---> Python, CLisp, Javascript

server <---> Max/MSP, Ableton Live, Reaper

Extending SuperCollider
The functionality of SuperCollider can be extended using external
packages

These are called Quarks and can be installed using SuperCollider itself

// Install packages via GUI (does not contain all packages)
Quarks.gui;

// Install package outside of gui using URL
Quarks.install("https://github.com/madskjeldgaard/KModules");

SC Plugins
SC3 Plugins is a
collection of user contributed code, mostly for making sound

The plugins are quite essential (and of varying quality / maintenance)

https://supercollider.github.io/sc3-plugins/

IDE

Important keyboard shortcuts
Open help file for thing under cursor: Ctrl/cmd + d

Evaluate code block: Ctrl/cmd + enter

Stop all running code: Ctrl/cmd + .

Start audio server: Ctrl/cmd + b

Recompile: Ctrl/cmd + shift + l

Clear post window: Ctrl/cmd + shift + p

The IDE as a calculator
SuperCollider is an interpreted language

This means we can "live code" it without waiting for it to compile

A good example of this is using it as a calculator

Autocompletion
Start typing and see a menu pop up with suggestions (and help files)

The status line
Shows information about system usage

Right click to see server options + volume slider

Everything in SuperCollider is an object

Objects
An object is an instance of a class

Classes describe how objects behave
... and what data they contain

What can an object do?
An object is always able to do something

This is defined by the methods of it's class

Methods are (often) documented and (sometimes) explained in the help
files

Classes inherit functionality

Syntax, strings and variables

Hello world
Use .postln to post something to the post window (important when
debugging):

"Hello world".postln

An important point on numbers in SC
As opposed to mathematical convention: there is no hierarchy between
operators

If you pick up a calculator and type 2+2*10 the result is probably
=22

Because normally there is an implicit parenthesis here: 2+(2*10) .

This isn't the case in SuperCollider:

2+2*10
-> 40

Using brackets to create mathematical hierarchy
SC looks at the first part (2+2) and calculates it, then multiplies it
(*10).

Therefore: Always use parenthesis when you need mathematical hierarchy:

2+(2*10)
-> 22

Syntax
Like with any other programming language, correct syntax is important.

When you get it wrong, the interpreter will give you an error (and thus
help you solve your problem)

If for example I wanted to write 9.cubed but accidentally wrote
9cubed and evaluated it, I would get the following error

RECEIVER: nil
ERROR: syntax error, unexpected NAME, expecting $end
 in interpreted text
 line 1 char 6:
 9cubed
 ^^^^^

ERROR: Command line parse failed
-> nil

Brackets / parenthesis
() encapsulates a block of code that is supposed to be executed

together ; is used to mark the end of a statement

An example of a block:

(
a = 111+222+333;
b = 444+555+666;
c = 777+888+999;
)

a; // -> 666
b; // -> 1665
c; // -> 2664

Expressions
The end of an expression is marked by a semicolon ;

SC will interpret everything up until the semicolon as one expression

Example: Two expressions

"hello".postln; "how are you?".postln;

This results in the following in the post window:

hello
how are you?
-> how are you?

Receiver notation
A way of executing a function (message) on an object (receiver)

Receiver.message(argument)

or

message(Receiver, argument)

Receiver notation examples:
100.rand same thing as rand(100)

"hello".postln same thing as postln("hello")

0.123.round(0.1) same thing as round(0.123, 0.1)

Comments
// can be used as single line comments:
// This comment is a one line comment Or at the end of a line:
10+10; // This comment is at the end of a line

/* */ is used for multiline comments. Everything between these is
treated as a comment.

/*
Roses are red
Violets are blue
SuperCollider is cool
and so are you
*/

Strings
A string is marked by double quotes: "This is a string";

It is now a String object:

"This is a string".class
-> String

String concatenation
A common string operation is the concatenation of strings

This is done using the ++ operator:

"One" ++ "Two" ++ "Three";
-> OneTwoThree

Symbols
A symbol can be written by surrounding characters by single quotes (may
include whitespace):

'foo bar'

Or by a preceding backslash (then it may not include whitespace):

\foo

Why symbols
From the Symbol help file: "A symbol, like a String, is a sequence of
characters.

Unlike strings, two symbols with exactly the same characters will be the
exact same object."

Symbols are most often used to name things (like synthesizers,
parameters or patterns)

Tip: Use symbols to name things, use strings for input and output.

Variables
A variable is a container that you can store data in:

var niceNumber = 123456789;

Variable names
Variable names must be written with a lowercase first letter.

Like this: var thisWorks and not like this: var ThisDoesNotWork

Reserved keywords
Another limitation in naming variables: Reserved keywords

These are words used to identify specific things in SC: nil , var ,
arg , false , true

Example:

var var
-> nil
ERROR: syntax error, unexpected VAR,
 expecting NAME or WHILE
 in interpreted text
 line 1 char 7:
 var var
 ^^^

Local variables
Local to a block of code

Must be initialized at the top of the block

(
var aLocalVariable1 = 123;

// contents of block
)

Environment variables
"Global" in scope, can be accessed throughout the environment

Don't need a var keyword in front of them when declared

Can be initiliazed at any point in the program

Writing environment variables

1. The letters a-z: a = "hej";

2. The tilde (~) prefix ~array = "hej";

Demonstration of variable scope

(
// local variable
var amazingVariable = "hello!";

// This works:
amazingVariable.postln;
)

// This returns a "not defined" error:
amazingVariable.postln;

Syntactic sugar
SC allows the user to write code in different styles using different
types of syntax.

The helpfiles Syntax
Shortcuts and
Symbolic
Notation can be
a big help when this becomes confusing

http://doc.sccode.org/Reference/Syntax-Shortcuts.html
http://doc.sccode.org/Overviews/SymbolicNotations.html

Functions

What is a function?
A function is a reusable encapsulation of functionality

Lets you reuse and call it elsewhere in your code

Repetitive code can often be simplified with functions

Functions
The core of the function is contained in curly brackets: {}

We declare a function like this. Note: This does not evaluate or
activate the function yet:

{2+2}
-> a Function

A function is evaluated by sending it the .value message:

{2+2}.value
-> 4

Syntactic sugar
Tip: .value can be omitted by just adding .() like so:
{arg x, y; x+y}.(x:2, y:7) , although .value is usually clearer

Function arguments
Functions can take arguments (data) as input and do something with them.

Arguments must be declared in the beginning of the function.

To pass values to the arguments, open a parenthesis after .value

Here we have named the argument x

{arg x; 2+x}.value(x: 8)
-> 10

Alternatively, the argument name can be omitted (but then you have to
know the order of arguments):

{arg x, y; x+y}.value(2, 8)
-> 10

Named
You can call arguments by their names:

{arg x, y; x+y}.value(x:2, y:8)
-> 10

Mixing named and unnamed arguments
You can mix named and unnamed arguments but you must call the unnamed
arguments at the end of the list

correct way:

{arg x=2, y; x+y}.value(2, y:8)
-> 10

incorrect way:

{arg x=2, y; x+y}.value(x:2, 8)
ERROR: syntax error, unexpected INTEGER, expecting ')' in interpreted text

Alternative argument syntax
Instead of writing arg argname1, argname2 you can put the arguments
inside pipe symbols:

f = {|x, y| x+y}

Argument default values
You can set the initial value of an argument when declaring it:

f = {|x=1, y=4| x+y}

Declaring multiple arguments or variables in one
go
You can choose between declaring like this:
arg argument1, argument2, argument3;

Or like this:

arg argument1;
arg argument2;
arg argument3;

The same goes for local variables

Functions can be put in variables and reused

f = {arg x, y; x + y};
f.value(2,1000); // = 1002
f.value(9,22); // = 31

Function returns
All blocks of code in SC return the result of the last statement (in
both () and {})

This is useful for doing further computations

f = {arg x, y; x + y};
a = f.value(2,1000); // = 1002
b = f.value(9,22); // = 31
a+b; // = 1033

Learning resources

Videos
Tutorials by Eli Fieldsteel covering a range of subjects: SuperCollider
Tutorials

https://www.youtube.com/watch?v=yRzsOOiJ_p4&list=PLPYzvS8A_rTaNDweXe6PX4CXSGq4iEWYC

Books

E-books

A gentle introduction to
SuperCollider

Thor Magnussons Scoring Sound

Paper books

Introduction to SuperCollider, Andrea
Valle

The SuperCollider
Book

https://ccrma.stanford.edu/~ruviaro/texts/A_Gentle_Introduction_To_SuperCollider.pdf
https://leanpub.com/ScoringSound
https://www.logos-verlag.de/cgi-bin/engbuchmid?isbn=4017&lng=eng&id=
https://mitpress.mit.edu/books/supercollider-book

Community
scsynth.org

sccode.org

Slack

Lurk

Mailing
list

Telegram

Telegram ES

Facebook

http://scsynth.org/
http://sccode.org/
https://scsynth.slack.com/
https://talk.lurk.org/channel/supercollider
https://www.birmingham.ac.uk/facilities/ea-studios/research/supercollider/mailinglist.aspx
https://t.me/supercollider_en
https://t.me/supercollider_es
https://www.facebook.com/groups/supercollider/

Awesome SuperCollider
A curated list of SuperCollider stuff

Find inspiration and (a lot more) more resources here:

Awesome
Supercollider

https://github.com/madskjeldgaard/awesome-supercollider

Learning to code: Advice
Practice 5 minutes every day

Set yourself goals: Make (small) projects

Use the community

